
From Runtime Failures to Patches:

Study of Patch Generation in

Production

Thomas Durieux INRIA & University of Lille

September 25, 2018

Advisors: Martin Monperrus & Lionel Seinturier

Thesis initiator: Youssef Hamadi Ecole Polytechnique

Jury: Olivier Barais Univ. of Rennes, Julia Lawall INRIA, Paolo Tonella Univ. of Svizzera Italiana,

Jean-Christophe Routier Univ. of Lille

Partnership between INRIA & Microsoft Research

Chromium is taking on average 48

days for handling blocking issues1

1Valdivia Garcia and Shihab, “Characterizing and predicting blocking

bugs in open source projects”, MSR’14

1

Automatic Patch Generation

Automatic Patch Generation2

Buggy Application Repair Strategy Oracle (e.g. Crash)

2Monperrus, “Automatic software repair: a bibliography”, CSUR’18.

2

Test-based Automatic Patch Generation

Buggy Program GenProg3,

Nopol4,

CapGen5, ...

Regression Oracle:

Passing Tests

Failure Oracle:

Failing Tests
3Le Goues et al., “GenProg: A generic method for automatic software repair”,

TSE’12
4Xuan et al., “Nopol: Automatic repair of conditional statement bugs in Java

programs”, TSE’16
5Wen et al., “Context-Aware Patch Generation for Better Automated Program

Repair”, ICSE’18

3

Test-based Automatic Patch Generation

Uses the test suite as the specification of the program.

Status Tests

Test Feature 1

Test Feature 2

Test Feature 3

Reproduced Bug-X

4

Test-based Automatic Patch Generation

Uses the test suite as the specification of the program.

Common practice: Developer reproduces a bug with a test

Status Tests

Test Feature 1

Test Feature 2

Test Feature 3

Reproduced Bug-X

4

Test-based Automatic Patch Generation

Uses the test suite as the specification of the program.

Goal: Patch generation techniques make all the tests passing

Status Tests

Test Feature 1

Test Feature 2

Test Feature 3

Reproduced Bug-X

4

Problem 1: Automatic patch

generation techniques rely on a failing

test-case to reproduce the bug.

5

Solution 1: To connect the automatic

patch generation techniques to the

production environment where real

bugs happen on a daily basis.

6

Overview of the Dissertation Structure

Chapter 3. Automatic patch generation techniques at

runtime

• DynaMoth: patch synthesizer (AST’16)

• NPEFix: metaprogramming patch generation

(SANER’17)

Chapter 4. Patch generation search space at runtime

• NPEFix repair search space (ICST’18)

Chapter 5. Patch generation in production

• BikiniProxy: JavaScript client-side (ISSRE’18)

• Itzal: Java server-side (ICSE NIER’17)

7

Overview of the Dissertation Structure

Chapter 3. Automatic patch generation techniques at

runtime

• DynaMoth: patch synthesizer (AST’16)

• NPEFix: metaprogramming patch generation

(SANER’17)

Chapter 4. Patch generation search space at runtime

• NPEFix repair search space (ICST’18)

Chapter 5. Patch generation in production

• BikiniProxy: JavaScript client-side (ISSRE’18)

• Itzal: Java server-side (ICSE NIER’17)

7

Overview of the Dissertation Structure

Chapter 3. Automatic patch generation techniques at

runtime

• DynaMoth: patch synthesizer (AST’16)

• NPEFix: metaprogramming patch generation

(SANER’17)

Chapter 4. Patch generation search space at runtime

• NPEFix repair search space (ICST’18)

Chapter 5. Patch generation in production

• BikiniProxy: JavaScript client-side (ISSRE’18)

• Itzal: Java server-side (ICSE NIER’17)

7

Demo

Error in the field.6

6Screencast: durieux.me/bikiniproxy.mp4

8

durieux.me/bikiniproxy.mp4

Outline

Automatic Patch Generation

BikiniProxy: Patch Generation for JavaScript Client-side

applications

BikiniProxy Architecture

BikiniProxy Evaluation

Itzal: Patch Generation for Server-side Applications

Itzal Architecture

Itzal Evaluation

Conclusion

9

BikiniProxy

BikiniProxy is a HTTP proxy that handles JavaScript errors

by rewriting the JavaScript and HTML HTTP

requests.

Browser Repair Proxy Server

10

BikiniProxy – Related Works

• JavaScript errors

• Vejovis by Ocariza et al. at ICSE’14 provides

suggestions for DOM errors

• TypeDevil by Pradel et al. at ICSE’15 detects API

misuses

⇒ Are offline techniques

• JavaScript transformation in production

• Automatic Workarounds by Carzaniga et al. at

TOSEM’15 based on manually written API-specific

alternative rules

• AjaxScope by Kiciman et al. at OSR’07 is a proxy that

instruments the JavaScript code to monitor the

performance.

⇒ Do not generate patches 11

BikiniProxy – Architecture

User Browser Web Server

style.css

image.png

script.js

page.htmlpage.htmlrewritten-page.html

JS Error Proxy

BikiniProxy Backend

patched-script.js

Browser: e.g. Firefox or Chrome

Web server: traditional HTTP server

12

BikiniProxy – Architecture

User Browser Web Server

style.css

image.png

script.js

page.html

page.htmlrewritten-page.html

JS Error Proxy

BikiniProxy Backend

patched-script.js

page.html: web resource.

12

BikiniProxy – Architecture

User Browser Web Server

style.css

image.png

script.js

page.html

page.htmlrewritten-page.html

JS Error

Proxy

BikiniProxy Backend

patched-script.js

JS Error: JS error faced by the user in the browser.

12

BikiniProxy – Architecture

User Browser Web Server

style.css

image.png

script.js

page.htmlpage.htmlrewritten-page.html

JS Error

Proxy

BikiniProxy Backend

patched-script.js

Proxy: BikiniProxy that handles failures by rewriting the

resources.

12

BikiniProxy – Architecture

User Browser Web Server

style.css

image.png

script.js

page.html

page.html

rewritten-page.html

JS Error

Proxy

BikiniProxy Backend

patched-script.js

12

BikiniProxy – Architecture

User Browser Web Server

style.css

image.png

script.js

page.htmlpage.html

rewritten-page.html

JS Error

Proxy

BikiniProxy Backend

patched-script.js

rewritten-page.html: web page with BikiniProxy framework.

12

BikiniProxy – Architecture

User Browser Web Server

style.css

image.png

script.js

page.htmlpage.html

rewritten-page.html

JS Error Proxy

BikiniProxy Backend

patched-script.js

12

BikiniProxy – Architecture

User Browser Web Server

style.css

image.png

script.js

page.htmlpage.html

rewritten-page.html

JS Error Proxy

BikiniProxy Backend

patched-script.js

BikiniProxy Backend: stores the errors faced by the User.

Goal: Collect JavaScript errors.

12

BikiniProxy – Architecture

User Browser Web Server

style.css

image.png

script.js

page.htmlpage.html

rewritten-page.html

JS Error

Proxy

BikiniProxy Backend

patched-script.js

BikiniProxy Backend: Send the known errors for a given

page.

patched-*.js: web resource’s rewritten by BikiniProxy.

Goal: Handle the known errors. 12

BikiniProxy – Repair Strategies

JavaScript Strategies

1. HTTP/HTTPS Redirector changes HTTP to HTTPS

2. HTML Element Creator creates HTML elements

3. Library Injector injects missing libraries

Generic Strategies

4. Line Skipper adds a precondition to the buggy statement

5. Initialize Variable initializes a null variable

13

Evaluation Protocol

1. Create a benchmark of JavaScript production errors

2. Evaluate BikiniProxy with the benchmark

14

DeadClick: a Benchmark of JavaScript Errors

Crawling statistics Value

Visited pages 96174

Pages with errors 4282 (4.5%)

Benchmark statistics Value

Pages with reproduced errors 555

Errors 826

Errors per page 1-10 (avg. 1.49)

Average page size 1.98mb

DeadClick is the first benchmark of reproducible JavaScript

errors.

15

BikiniProxy – Evaluation Protocol

1. Access each web page of DeadClick with BikiniProxy

enabled

2. Collect the triggered errors

3. Compare the errors with the DeadClick errors

16

BikiniProxy – Evaluation Results

53 error types # handled error

XXX is not defined 184/307 (60%)

Cannot read property XXX of null 42/176 (24%)

XXX is not a function 11/111 (10%)

Unexpected token X 2/61 (3%)

Cannot set property XXX of null 11/24 (46%)

Invalid or unexpected token 0/21 (0%)

Unexpected identifier 0/15 (0%)

Script error for: XXX 2/10 (20%)

... ...

248/826 (30%)

BikiniProxy is able to handle 30% of the errors.
17

BikiniProxy – Discussion

Future work: How to characterize errors in a dynamic

context?

Long term goal: To assist humans and automatic

approaches by providing additional information from dynamic

context in order to characterize errors.

18

BikiniProxy – Conclusion

BikiniProxy is presented in Chapter 5 of the dissertation, will

be presented at ISSRE’18 and is nominated for the best paper

award.

Key Novelties

• First proxy-based repair technique

• New repair strategies for JavaScript errors

• First benchmark of JavaScript field errors

19

Problem 2: Automatic generated

patches can alter the state of the

applications.

20

Solution 2: To shadow the production

application in a sandboxed

environment for patch generation

techniques.

21

Outline

Automatic Patch Generation

BikiniProxy: Patch Generation for JavaScript Client-side

applications

BikiniProxy Architecture

BikiniProxy Evaluation

Itzal: Patch Generation for Server-side Applications

Itzal Architecture

Itzal Evaluation

Conclusion

22

Itzal – Related Works

• Test-based patch generation

• GenProg by Le Goues et al. at ICSE’09 uses the

existing code of the application to repair it.

• CapGen by Wen et al. at ICSE’18 uses the context of

the buggy statement to identify patch candidates.

⇒ Rely on failing test-case

• Runtime repair in production

• Assure by Sidiroglou et al. at ASPLOS’09 is a

self-healing system that replies on checkpointing.

• Ares by Gu et al. at ASE’16 uses existing error handler

to handle unexpected errors.

⇒ Change the production state

23

Itzal – Architecture

Client Server

Shadower

Server

Sandbox

Patch Service

Regression Service

Failure Oracle

Regression Oracle

Reporting

Developer

Client: e.g. a browser

Server: e.g. a web server

24

Itzal – Architecture

Client Shadower

Server

Sandbox

Patch Service

Regression Service

Failure Oracle

Regression Oracle

Reporting

Developer

Shadower: intercepts and duplicates the requests

24

Itzal – Architecture

Client Shadower

Server

Sandbox

Patch Service

Regression Service

Failure Oracle

Regression Oracle

Reporting

Developer

Patch Service: generates patches that fix the requests

Failure Oracle: detects if a request is passing or failing

24

Itzal – Architecture

Client Shadower

Server

Sandbox

Patch Service

Regression Service

Failure Oracle

Regression Oracle

Reporting

Developer

Regression: executes passing request on patched server

Regression Oracle: compares the output of the original

server and the patched server 24

Itzal – Architecture

Client Shadower

Server

Sandbox

Patch Service

Regression Service

Failure Oracle

Regression Oracle

Reporting

Developer

Reporting: communicates the patches to the developers

(Dashboard, Pull Request, ...)

24

Itzal – Oracles

• Failure Oracle: decides if a response is valid or not (e.g.

HTTPstatus 6= 5xx)

• Regression Oracle: decides if a patch does not modify the

behavior for all non-failing requests.

25

Itzal – Evaluations

Three evaluations:

Evaluation 1: Patch Generation Service

- Assert that the patch generation service can generate

patches from a failing execution.

Evaluation 2: Regression Service

- Assert that the regression service can detect behavior

changes between a valid and an invalid patch.

Evaluation 3: Itzal Architecture

- Assert that all the services of Itzal work together by

evaluating it with two cases studies.

26

Itzal – Evaluation 1 Protocol

Goal: Assert that the patch generation service can

generate patches from a failing execution.

1. Collect 34 null pointer exception bugs from six

benchmarks

2. Repair the bugs with NPEFix and Exception-Stopper

3. Verify that the generated patches handle the buggy

request

27

Itzal – Evaluation 1 Results

Repair Strategies

NPEFix Exception-Stopper

Valid # Invalid # Valid # Invalid

34 bugs from 14

applications

23 118 31 060 198 592

NPEFix and Exception-Stopper can generate patches from a

failing request.

28

Itzal – Evaluation 2 Protocol

Goal: Assert that the regression service can detect invalid

patches.

1. Take two e-commerce applications

2. Inject bugs in the e-commerce applications

3. Generate patches with NPEFix

4. Create synthetical production traffic for the e-commerce

applications

5. Compare the regression oracles effectiveness to detect

behavior change in the applications

29

Itzal – Evaluation 2 Regression Oracles

Visual behavior:

• HTTP Status HTTPstatus 6= 5xx

• HTTP Content Responsepatched == Responseoriginal

Program behavior:

• Execution trace at method level

Methodpatched ' Methodoriginal

• Execution trace at block level

Blockpatched ' Blockoriginal

30

Itzal – Evaluation 2 Results

Differences

Is
V

al
id

P
at

ch
?

Patches H
T

T
P

st
at

us

H
T

T
P

co
nt

en
t

T
ra

ce
M

et
ho

d

T
ra

ce
B

lo
ck

Patch 1 Yes

Patch 2 No

Patch 3 No

...

80 patches 16 42 39 42 23

Regression oracles can detect behavior changes by observing

the application behavior.
31

Itzal – Evaluate 3 Protocol

Goal: Assert that all the services of Itzal work together by

evaluating it with two cases studies.

1. Find null pointer exceptions in e-commerce applications

2. Identify the workflow to reproduce the bugs

3. Setup the application in Itzal architecture

4. Replay the buggy requests and synthetical requests

5. Collect the generated patches

32

Itzal – Evaluation 3 Case Study

33

Itzal – Evaluation 3 Architecture

Workload Shadower

Mayocat

Patch Service

HTTPstatus 6= 5xx

34

Itzal – Evaluation 3 Results

Repair Strategy # Valid # Invalid

NPEFix 105 182

Valid generated patch by Itzal for Mayocat

@@ FlatStrategyPriceCalculator.java

@@ −37,2 +37,5 @@

+ if (carrier.getPerItem() == null) {

+ return null;

+ }

price = price.add(carrier.getPerItem().

multiply(BigDecimal.valueOf(numberOfItems)));

Itzal architecture is able to generate patches.

35

Itzal – Discussion

Future work: Which regression oracle can be used to identify

incorrect behavior in applications?

Long term goal: To create new approaches based on

regression oracle to detect execution anomalies.

36

Itzal – Conclusion

Itzal has been presented in Chapter 5 of the dissertation and

has been presented at ICSE NIER’17.

Key Novelties

• Patch generation in production.

• Patch regression with production inputs.

• Shadowing the production environment to a repair

environment to not introduce regression in the

application.

37

Outline

Automatic Patch Generation

BikiniProxy: Patch Generation for JavaScript Client-side

applications

BikiniProxy Architecture

BikiniProxy Evaluation

Itzal: Patch Generation for Server-side Applications

Itzal Architecture

Itzal Evaluation

Conclusion

38

Conclusion

This thesis is the first work to show that automatic patch

generation in production is feasible with:

• BikiniProxy: a patch generation technique for JavaScript

client-side applications

• Itzal: a patch generation architecture for server-side

applications

39

Future Work

Perspectives

• Characterizing errors in dynamic environment

• Studying new regression oracles that can be used to

detect behavior execution anomalies.

• Creating new repair strategies for JavaScript errors

• How to integrate automatic patch generation techniques

in developer’s workflow

40

Open-science

All the artifacts produced during this thesis are open-science.

They are available on GitHub:

https://github.com/spirals-team/

https://github.com/SpoonLabs/

https://github.com/tdurieux/

41

https://github.com/spirals-team/
https://github.com/SpoonLabs/
https://github.com/tdurieux/

Publications

Five first author papers:

• Fully Automated HTML and JavaScript Rewriting for

Constructing a Self-healing Web Proxy, ISSRE’18,

Distinguished Paper

• Exhaustive Exploration of the Failure-oblivious Computing

Search Space, ICST’18

• Dynamic Patch Generation for Null Pointer Exceptions

Using Metaprogramming, SANER’17

Short Papers

• Production-Driven Patch Generation, ICSE NIER’17

• Dynamoth: dynamic code synthesis for automatic

program repair, AST’16
42

Publications

Five collaborations:

• Towards an automated approach for bug fix pattern

detection, VEM’18, Best Paper Award

• Dissection of a Bug Dataset: Anatomy of 395 Patches

from Defects4J, SANER’18

• Test Case Generation for Program Repair: A Study of

Feasibility and Effectiveness, EMSE’17

• Automatic Repair of Real Bugs in Java: A Large-Scale

Experiment on the Defects4J Dataset, EMSE’16

• Nopol: Automatic repair of conditional statement bugs in

Java programs, TSE’16

43

Summary

Test-based Automatic Patch Generation

Buggy Program GenProg3,

Nopol4,

CapGen5, ...

Regression Oracle:

Passing Tests

Failure Oracle:

Failing Tests

3Le Goues et al., “GenProg: A generic method for automatic software repair”,

TSE’12
4Xuan et al., “Nopol: Automatic repair of conditional statement bugs in Java

programs”, TSE’16
5Wen et al., “Context-Aware Patch Generation for Better Automated Program

Repair”, ICSE’18 3

Itzal – Architecture

Client Shadower

Server

Sandbox

Patch Service

Regression Service

Failure Oracle

Regression Oracle

Reporting

Developer

Reporting: communicates the patches to the developers

(Dashboard, Pull Request, ...)

24

BikiniProxy – Architecture

User Browser Web Server

style.css

image.png

script.js

page.htmlpage.html

rewritten-page.html

JS Error

Proxy

BikiniProxy Backend

patched-script.js

BikiniProxy Backend: Send the known errors for a given

page.

patched-*.js: web resource’s rewritten by BikiniProxy.

Goal: Handle the known errors. 12

Conclusion

This thesis is the first work to show that automatic patch

generation in production is feasible with:

• BikiniProxy: a patch generation technique for JavaScript

client-side applications

• Itzal: a patch generation architecture for server-side

applications

39 44

DeadClick

DeadClick Creation Protocol

DeadClick is a benchmark of reproducible JavaScript errors

from production web applications.

1. Browse randomly web pages

• Select 3 words in the English dictionary

• Request Google

• Open the first link

2. Collect the web pages and their errors

3. Reproduce the errors

DeadClick Creation Protocol

DeadClick is a benchmark of reproducible JavaScript errors

from production web applications.

1. Browse randomly web pages

2. Collect the web pages and their errors

• Open the web page

• Wait for 7 seconds

• Collect the body, header of requests that are triggered

by the web page

• Collect the JavaScript errors in the console

• Collect a screenshot of the page

3. Reproduce the errors

DeadClick Creation Protocol

DeadClick is a benchmark of reproducible JavaScript errors

from production web applications.

1. Browse randomly web pages

2. Collect the web pages and their errors

3. Reproduce the errors

• Wait 3 weeks

• Open each collected the web page

• Collect the JavaScript errors

• Compare the reproduced errors with the errors previously

collected

NPEFix

NPEFix

Execution

Start

Execution

End

Ok

Failure

NPE1

Line

3

Strategy:

return new Date();

NPE2

Line

6

Strategy:

return null;
Strategy:

new Date().toString();

Strategy:

return;

NPEFix

Execution

Start

Execution

End

Ok

Failure

NPE1

Line

3

Strategy:

return new Date();

NPE2

Line

6

Strategy:

return null;
Strategy:

new Date().toString();

Strategy:

return;

NPEFix

Execution

Start

Execution

End

Ok

Failure

NPE1

Line

3

Strategy:

return new Date();

NPE2

Line

6

Strategy:

return null;
Strategy:

new Date().toString();

Strategy:

return;

NPEFix

Execution

Start

Execution

End

Ok

Failure

NPE1

Line

3

Strategy:

return new Date();

NPE2

Line

6

Strategy:

return null;
Strategy:

new Date().toString();

Strategy:

return;

	Automatic Patch Generation
	BikiniProxy: Patch Generation for JavaScript Client-side applications
	BikiniProxy Architecture
	BikiniProxy Evaluation

	Itzal: Patch Generation for Server-side Applications
	Itzal Architecture
	Itzal Evaluation

	Conclusion
	Appendix

